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1. Introduction

Vortex strings provide a map between four-dimensional non-Abelian gauge theories and

two-dimensional sigma-models. The four-dimensional theories in question have a U(Nc)

gauge group and a sufficient number of scalar fields to allow complete gauge symmetry

breaking, so that the system lies in the Higgs phase. Theories with this property admit

vortex strings. The embedding of the vortex within the non-Abelian gauge group endows

the string with a number of orientation modes which parameterize the complex projective

space CPNc−1. Further bosonic and fermionic zero modes of the vortex live in line bundles

over CPNc−1. In this manner, the low-energy dynamics of a single, straight, infinite vortex

string is described by some variant of the CPNc−1 sigma-model living on the d = 1 + 1

dimensional worldsheet [1, 2].

When the four-dimensional gauge theory has N = 2 supersymmetry, a pleasing story

emerges. The strings are 1/2-BPS, ensuring that the worldsheet dynamics inherits N =

(2, 2) supersymmetry. It was shown in [3, 4], following earlier work of [5, 6], that the

quantum dynamics of the worldsheet theory encodes quantitative information about the

quantum dynamics of the parent four-dimensional theory, including the Seiberg-Witten

curve and the exact BPS mass spectrum. More recently, the correspondence was extended

to superconformal points, with a matching between the scaling dimensions of chiral primary

operators in the four-dimensional bulk and on the worldsheet [7]. For a review of the

classical and quantum dynamics of these strings, see [8].

The purpose of this paper is to present a detailed study of the classical dynamics of

vortex strings in N = 1 four-dimensional gauge theories. For certain choices of parame-

ters the strings once again preserve 1/2 of supersymmetry, now guaranteeing N = (0, 2)

supersymmetry on the worldsheet. For this reason, we refer to vortices in N = 1 theories

as “heterotic vortex strings”. We will determine the explicit N = (0, 2) CPNc−1 sigma-

models, and their variations, which describe the low-energy dynamics of vortex strings in

a large class of N = 1 gauge theories.1

The paper is organized as follows: section 2 contains a detailed discussion of the

N = (2, 2) worldsheet dynamics of vortex strings in N = 2 four-dimensional theories. This

section is mostly a review of previous work, although explicit expressions for bosonic and

fermionic zero modes are provided which generalize results in the literature from U(2) gauge

theories to U(Nc) gauge theories. Particular attention is paid to the chirality of different

fermionic zero modes since this will prove important in later sections. Section 3 also

contains review material, describing the basics of the superfield formalism for N = (0, 2)

supersymmetry in d = 1 + 1 dimensions.

The meat of the paper is in section 4. We consider two different classes of deformations,

each of which breaks the four-dimensional supersymmetry from N = 2 to N = 1 through

the introduction of a superpotential for the adjoint chiral multiplet. In each case, we show

that there is a unique N = (0, 2) worldsheet theory which correctly captures all BPS

1Vortex strings in various non-Abelian theories with less supersymmetry were previously studied in [9-

13] and in some cases qualitative agreement was found between the dynamics of the worldsheet theory and

the bulk. We will comment more on the relationship of our work to some of these papers in section 4.
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properties of the vortex string and predicts the interaction of fermionic zero modes. We

also include an appendix which collates the notation for bulk and worldsheet fields used

throughout the paper.

2. The N = (2, 2) dynamics of vortex strings

In this section we review the dynamics of vortex strings in four-dimensional gauge theories

with N = 2 supersymmetry. The vortices are 1/2-BPS, ensuring that the d = 1 + 1

dimensional worldsheet dynamics of the string inherits N = (2, 2) supersymmetry.

2.1 The four-dimensional theory

Our starting point is the d = 3 + 1, N = 2 supersymmetric U(Nc) gauge theory, with Nf

flavors transforming in the fundamental representation.2 We describe the theory in the

language of four-dimensional N = 1 superfields. The N = 2 vector multiplet consists of

an N = 1 vector multiplet V and an N = 1 adjoint chiral multiplet A. Similarly, each

flavor hypermultiplet splits into two chiral multiplets, Qi and Q̃i where i = 1, . . . , Nf is the

flavor index. Each Qi transforms in the fundamental Nc of the gauge group, while each Q̃i

transforms in the anti-fundamental N̄c. We denote the complexified gauge coupling of the

theory as

τ =
2πi

e2
+

θ

2π
. (2.1)

The four dimensional theory has the usual superpotential required for N = 2 supersym-

metry,

WN=2 =
√

2

Nf
∑

i=1

Q̃iAQi . (2.2)

The scalar potential of the theory is dictated by the D-term and the F-terms arising from

this superpotential. In components it is given by,

V4d =
e2

2
Tr

( Nf
∑

i=1

QiQ
†
i − Q̃iQ̃

†
i − v2 1Nc

)2

+ e2Tr|
Nf
∑

i=1

Q̃iQi|2

+

Nf
∑

i=1

(

Q†
i{A,A†}Qi + Q̃i{A,A†}Q̃†

i

)

+
1

2e2
Tr|[A,A†]|2 (2.3)

where we have taken the liberty of denoting the component scalar fields by the same

Roman letter as the superfield in which they reside. We have included a D-term Fayet-

Iliopoulos (FI) parameter v2 for the central U(1) ⊂ U(Nc). This is consistent with N = 2

2Conventions: We pick Hermitian generators T m with Killing form Tr T mT n = 1

2
δmn. We write the

gauge field as Aµ = Am
µ T m and Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]. Fundamental covariant derivatives are

DµQ = ∂µQ− iAµQ; adjoint covariant derivatives are DµA = ∂µA− i[Aµ, A]. Our summation conventions

are inconsistent: a sum over repeated indices is usually left implicit unless there is some ambiguity or a

point that requires emphasis.

– 3 –



J
H
E
P
0
5
(
2
0
0
7
)
0
0
5

supersymmetry and forces the theory into the Higgs phase, with Qi gaining a vacuum

expectation value (vev). For Nf < Nc, the rank condition ensures the D-term cannot

vanish and there is no supersymmetric ground state. We do not consider this case. When

Nf > Nc, the D-term and F-term conditions do not fix the vevs of Qi and Q̃i completely

and there is a Higgs branch of vacua; we shall discuss this situation in section 2.5.2. For

now we restrict attention to the case Nf = Nc for which there is a unique supersymmetric

ground state in which the gauge group is completely broken. Up to a gauge transformation

the ground state is given by

Qa
i = vδa

i , Q̃i = A = 0 (2.4)

where a = 1, . . . , Nc is the color index. The theory lies in the color-flavor locked phase,

with the vacuum expectation value preserved by a simultaneous gauge and flavor rotation.

The symmetry breaking pattern is thus broken to the diagonal combination of the two

(recall that we are looking at the theory with Nf = Nc)

U(Nc) × SU(Nf ) → SU(Nc)diag . (2.5)

2.2 The vortex

The central U(1) ⊂ U(Nc) does not survive the symmetry breaking (2.5), a fact which

provides sufficient topology to ensure the presence of vortex strings in the theory [14].

These vortices preserve 1/2 of the supersymmetry, ensuring N = (2, 2) supersymmetric

dynamics on their d = 1 + 1 dimensional worldvolume. Infinite, straight strings oriented

in the x3 direction satisfy the first-order equations,

F12 = e2

( Nf
∑

i=1

QiQ
†
i − v2 1Nc

)

DzQi ≡
1

2
(D1Qi − iD2Qi) = 0 (2.6)

where z = x1 + ix2 parameterizes the transverse plane. These are the non-Abelian vortex

equations. Solutions to these equations have tension

Tk = 2πkv2 (2.7)

where k = −Tr
∫

(F12/2π) ∈ Z+ is the winding number.

Solutions to the vortex equations with winding number k have 2kN bosonic collective

coordinates. For a single k = 1 vortex, they break down as follows: there are 2 collective

coordinates corresponding to the position of the string in the z = x1 + ix2 plane. The

remaining 2(N − 1) collective coordinates are Goldstone modes arising from the action of

the surviving symmetry (2.5) on the vortex string. They parameterize SU(Nc)/[SU(Nc −
1) × U(1)] ∼= CPNc−1 [1, 2].

An explicit realization of the orientational modes is most simply given in singular gauge

in which Q does not wind asymptotically, with the flux instead arising from a singular gauge
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potential [2]. Suppose that the Abelian Nc = 1 vortex equations are solved by two profile

functions q(ρ) and a(ρ), where ρ =
√

(x1)2 + (x2)2 is the radial distance from the string

QAbelian = vq(ρ) and (Az)Abelian = −iz̄a(ρ) . (2.8)

Here the complexified gauge connection is Az = 1
2(A1 − iA2). Plugging this ansatz into the

vortex equations gives two first order ordinary differential equations,

q′ = 2ρaq and 4a + 2ρa′ = e2v2(q2 − 1) (2.9)

with prime denoting the derivative with respect to ρ. These equations are known to admit

a unique solution satisfying the appropriate boundary conditions,

q(ρ) →
{

1

0
, a(ρ) →

{

0 as ρ → ∞
1/2ρ2 as ρ → 0 .

(2.10)

However, the solution does not have a simple analytic form. A sketch of the profile q(ρ) is

shown in figure 1.

With the k = 1 Abelian vortex solution in hand, one

1/ev

q

1

ρ

Figure 1: The vortex profile.

may simply construct a solution to the non-Abelian equa-

tions by embedding thus,

Qa
i =

(

φaφ̄i

r

)

v[q(ρ) − 1] + vδa
i and

(Az)
a
b = −iz̄a(ρ)

(

φaφ̄b

r

)

. (2.11)

The φa ∈ CNc define the orientation of the vortex in the

gauge and flavor groups. In order that this reduce to the

Abelian solution, we require

Nc
∑

a=1

|φa|2 = r (2.12)

with r a constant that will be fixed shortly. The solutions (2.11) are invariant under the

simultaneous rotation,

φa → eiαφa . (2.13)

The φa, subject to the constraint (2.12) and identification (2.13), provide homogeneous

coordinates on CPNc−1. The SU(Nc) symmetry of four-dimensions descends to the vortex

string, with the φa transforming in the fundamental representation. This ensures that the

CPNc−1 is endowed with the symmetric Fubini-Study metric. The Kähler class of this

space is r.

A comment on notation: since Nf = Nc, both Qa
i and (Az)

a
b are Nc × Nc matrices.

In what follows, we shall often neglect to write the indices on both. In this notation, Q

is a matrix on which gauge rotations U ∈ U(Nc) act from the left, while flavor rotations

V ∈ SU(Nf ) act from the right, so that Q → UQV †.

– 5 –
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2.2.1 Bosonic zero modes

For general winding number k, the vortex zero modes are defined to be solutions to the

linearized vortex equations,

DzδAz̄ −Dz̄δAz =
ie2

2
(δQQ† + QδQ†)

DzδQ = iδAzQ . (2.14)

These are to be supplemented with a suitable gauge fixing condition which is derived from

Gauss’ law and reads

DzδAz̄ + Dz̄δAz = − ie2

2
(δQQ† − QδQ†) . (2.15)

This gauge fixing condition combines with the first of the linearized vortex equations to

leave us with two, complex, first order equations to be solved around the background of a

fixed vortex configuration,

2Dz̄δAz = −ie2δQQ†

DzδQ = iδAzQ. (2.16)

We now derive the solutions to these equations that arise from the symmetries of the

system.

Translational mode. For any winding number k, the two translational modes are always

given by

δAz = Fz̄z and δQ = Dz̄Q (2.17)

which can be checked to satisfy (2.16) using the fact that the background fields obey the

second order equations of motion.

Orientational modes. The zero modes corresponding to orientation are only slightly

more complicated. In general they can be written as

δAz = DzΩ

δQ = i(ΩQ − QΩ̂). (2.18)

Here Ω(x) is an infinitesimal gauge rotation, while Ω̂ is an infinitesimal flavor rotation.

Since only the diagonal subgroup (2.5) of these is preserved in the vacuum, we require that

Ω(x) → Ω̂ as x → ∞. In terms of our orientation coordinates φi, this diagonal rotation

can be written as,

Ω̂i
j = −i

[

δφiφ̄j − φiδφ̄j − 2iuφiφ̄j

]

(2.19)

which holds for any u. Requiring that Ω̂ ∈ su(Nc) fixes u to be

u = −iφ̄i δφi . (2.20)

– 6 –
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Later u will become a gauge field on the worldsheet whose role is to implement the iden-

tification (2.13). For now, we can treat u as a connection and introduce the covariant

variation ∇φi = δφi − iuφi which satisfies ∇φi · φ̄i = 0. In this notation

Ω̂i
j = −i[(∇φi)φ̄j − φi∇φ̄j]. (2.21)

The zero mode equations (2.16) translate to the requirement that Ω(x) satisfy the second

order differential equation

D2Ω = e2
[

{Ω, QQ†} − 2QΩ̂Q†
]

. (2.22)

Everything above holds for arbitrary winding number k. For a single vortex, with k = 1,

the solution to (2.22) was provided in [10] (see equation (28) of that paper) and depends

only on the profile function q(ρ) of the vortex3

Ω(ρ) = q(ρ) Ω̂. (2.23)

Using the solution (2.23), we can now be more explicit about the orientation zero modes

for a single vortex. Making use of the vortex equations (2.6), we find

(δAz)
a
b = −2i(∂zq) (∇φa)φ̄b

δQa
i = v(q2 − 1) (∇φa)φ̄i. (2.24)

2.3 Fermions

We now turn to a study of the fermionic zero modes [15]. We start by describing the

Dirac equations in four-dimensions and their solutions for a single k = 1 vortex. We will

pay particular attention to the correlation between the chirality of the worldsheet and

four-dimensional fermions.

In the following we use four-dimensional Weyl fermions ψα and λ̄α̇ with α, α̇ = 1, 2.

The notation is standard Wess and Bagger fare [16] with, for example, ψλ = ψαλα = λψ

and ψ̄λ̄ = ψ̄α̇λ̄α̇ = λ̄ψ̄. Indices are raised and lowered with ǫαβ = ǫα̇β̇ = iσ2. Our signature

is mostly minus and we define (σµ)αα̇ = (−1, σi) and (σ̄µ)α̇α = (−1,−σi).

The N = 2 vector multiplet in four dimensions contains two Weyl fermions, λ and η,

each transforming in the adjoint representation of the U(Nc) gauge group. The fermion

λ lives in the N = 1 vector multiplet while η lives in the adjoint chiral multiplet A.

Each hypermultiplet also contains two Weyl fermions, ψ and ψ̃. These live in Q and Q̃,

and transform in the Nc and N̄c representations respectively. The Dirac equations in the

N = 2 theory are

− i

e2
/̄Dλ − i

√
2

e2
[η̄, A] + i

√
2Qiψ̄i − i

√
2
¯̃
ψiQ̃i = 0

− i

e2
/̄Dη − i

√
2

e2
[A, λ̄] −

√
2Q̃†

i ψ̄i −
√

2¯̃ψiQ
†
i = 0 (2.25)

−i /̄Dψi + i
√

2λ̄Qi −
√

2A† ¯̃ψi −
√

2η̄Q̃†
i = 0

−i /̄Dψ̃i − i
√

2Q̃iλ̄ −
√

2ψ̄iA
† −

√
2Q†

i η̄ = 0.

3Equation (2.23) solves (2.22) by virtue of the vortex profile obeying the second order equation 4∂z∂z̄q−

4a2ρ2q = e2v2q(q2 − 1).
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We wish to study these equations in the background of the vortex. Here they simplify

considerably since we have A = Q̃i = 0. The equations decouple into two pairs: the first

set of equations are for λ and ψ̄i

− i

e2
/̄Dλ + i

√
2Qiψ̄i = 0 and −i /Dψ̄i − i

√
2Q†

iλ = 0. (2.26)

The second set of equations are for η and ¯̃ψi,

− i

e2
/̄Dη −

√
2¯̃ψiQ

†
i = 0 and −i /D ¯̃ψi −

√
2ηQi = 0. (2.27)

2.3.1 Chirality

Each pair of four-dimensional fermions gives rise to a fermi zero mode on the vortex string

of a specific chirality. Since this will be important in later sections, we dwell on the point

a little here. The first step is to see which components of the spinors can turn on in the

background of a vortex or anti-vortex. We will need the following identities,

/Dαα̇ ≡ (σµ)αα̇Dµ = 2

(

−D− Dz

Dz̄ −D+

)

and /̄D
α̇α ≡ (σ̄µ)α̇αDµ = −2

(

D+ Dz

Dz̄ D−

)

(2.28)

where D± = 1
2(D0 ± D3) and Dz = 1

2(D1 − iD2) and Dz̄ = 1
2(D1 + iD2). Our strings

are static and oriented in the x3 direction, so in searching for zero modes of the Dirac

equation in the presence of a vortex we may initially set D± = 0. We decompose the

spinors as (λ1, λ2) = (λ−, λ+) and (λ1, λ2) = (λ−, λ+) so that, with our raising and lowering

conventions, λ+ = −λ− and λ− = λ+. To see which components turn on in the background

of the vortex, we act on the first and second equations in (2.26) with /D and /̄D respectively.

Making use of the vortex equation DzQi = 0, we find
(

− 4

e2
DzDz̄ + 2QiQ

†
i

)

λ− = 0

(

− 4

e2
Dz̄Dz + 2QiQ

†
i

)

λ+ −
√

2(Dz̄Qi) ψ̄+i = 0 (2.29)

and

(−DzDz̄δij + 2QiQ
†
j)ψ̄+j −

√
2(DzQ

†
i )λ+ = 0

(−Dz̄Dzδij + 2Q†
iQj)ψ̄−j = 0. (2.30)

The operators appearing in the equations for λ− and ψ̄−i are positive definite: these

components can have no zero modes. All zero modes live in the components λ+ and ψ̄+i.

To see how this correlates with the chirality of the worldsheet fermions, we now allow

these zero modes to vary along the string so that λ+ = λ+(x0, x3) and ψ̄+i = ψ̄+i(x
0, x3).

Plugging this ansatz back into the Dirac equation, including now the derivatives D± in

(2.28), we find the equations of motion ∂−λ+ = ∂−ψ̄+i = 0. We call these fermions right

movers.

Repeating this analysis for Dirac equations (2.27), we find that η− and ¯̃ψ−i both carry

zero modes in the background of the vortex. They are left movers on the string worldsheet4

4In the background of an anti-vortex, with Dz̄Qi = 0, the chirality of the fermi zero modes is reversed,

so that (λ, ψ̄) donate left movers, while (η, ¯̃ψ) donate right movers.

– 8 –
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2.3.2 Fermi zero modes

From the previous analysis, we learn that the right moving fermi zero modes solve

√
2Dzλ+ = −e2 Qiψ̄+i√
2Dz̄ψ̄+i = −Q†

iλ+ (2.31)

while the equations for the left moving fermi zero modes solve

√
2iDz̄η− = −e2 ¯̃

ψ−iQ
†
i√

2iDz
¯̃
ψ−i = η−Qi. (2.32)

Each of these pairs of equations is the same as the equations for bosonic zero modes (2.16)

that are derived by linearizing the vortex equations and imposing a gauge fixing constraint.

The relationship between the bosonic and fermionic zero modes is given by

λ+ ↔ δAz̄ and
√

2ψ̄+i ↔ −iδQ†
i

η− ↔ δAz and
√

2¯̃ψ−i ↔ −δQi. (2.33)

This mapping between the zero mode profiles is a consequence of the preserved supersym-

metry in the background of the vortex. Using this, it is trivial to derive the explicit zero

modes in the case of a single k = 1 vortex.

Goldstino modes. The bosonic translational modes were given in (2.17). Their

fermionic counterparts are

λ+ = Fzz̄χ̄+ and ψ̄+i = − i√
2
DzQ

†
i χ̄+

η− = Fz̄zχ− and
¯̃
ψ−i = − 1√

2
Dz̄Qiχ−. (2.34)

Both of these are Goldstino modes, arising from acting on the bosonic vortex profile (2.11)

with the two broken supersymmetries parameterized by χ±. The above formulae hold for

arbitrary k; if we restrict to the explicit k = 1 solution, we may write these in terms of the

vortex profile function q(ρ),

(λ+)ab =
ie2v2

2r
(q2 − 1)φaφ̄iχ̄+ and ψ̄A

+i = − i
√

2v

r
(∂zq)φaφ̄bχ̄+

η− = − ie2v2

2r
(q2 − 1)φaφ̄bχ− and

¯̃
ψ

a

−i = −
√

2v

r
(∂z̄q)φaφ̄iχ−. (2.35)

Super-orientation modes. The superpartners of the orientational modes are equally

easy to write down. Given the bosonic zero modes (2.18), we have

(λ+)ab = 2i(∂z̄q)φaξ̄+b and ψ̄a
+i = − iv√

2
(q2 − 1)φiξ̄

a
+

(η−)ab = −2i(∂zq) ξa
−φ̄b and ¯̃ψ

a

−i = − v√
2
(q2 − 1)ξa

−φ̄i. (2.36)
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It is clear from these expressions, that the redundancy (2.13) which acts among the φi

orientational coordinates, must also act on the superpartners ξ±i, so that

φi → eiαφi and ξi → eiαξi. (2.37)

Moreover, the fact that there do not exist orientational coordinates in the N = 1 Abelian

theory means that we must impose a constraint on the ξ±i, namely

Nc
∑

i=1

φ̄iξ±i = 0. (2.38)

2.4 Supersymmetric dynamics

The low-energy dynamics of the vortex string arises by promoting the collective coordinates

z, χ±, φi and ξ±i to dynamical fields on the string worldsheet, depending on y0 ≡ x0

and y1 ≡ x3. The fact that the vortices are BPS, preserving 1/2 of the N = 2 four-

dimensional supersymmetry, ensures that the resulting worldsheet dynamics is invariant

under N = (2, 2) supersymmetry. Indeed, the various bosonic and fermionic collective

coordinates are easily packaged into N = (2, 2) superfields. The translational mode z and

the two Goldstino modes χ± sit in an N = (2, 2) chiral multiplet Z. Our notation is

standard5 and follows, for example, [37]

Z = z + θ+χ+ + θ−χ− + θ+θ−GZ + . . . . (2.39)

Similarly, the orientation modes φi and their superpartners ξ±i also sit in (2, 2) chiral

multiplets,

Φi = φi + θ+ξ+i + θ−ξ−i + θ+θ−Gi + . . . . (2.40)

The two constraints φ̄iφi = r, and φ̄iξ±i = 0, together with the identification (2.37), are

imposed on the worldsheet theory by introducing an auxiliary N = (2, 2) vector multiplet

which, in Wess-Zumino gauge, has components

U = −θ−θ̄−(u0 − u1) + θ+θ̄+(u0 + u1) − θ−θ̄+σ − θ+θ̄−σ̄ (2.41)

+
√

2iθiθ+(̄θ
−
ζ̄− + θ̄+ζ̄+) +

√
2iθ̄+θ̄−(θ−ζ− + θ+ζ+) + 2θ−θ+θ̄+θ̄−D.

The two dimensional field strength u01 = ∂0u1−∂1u0 is naturally housed in a twisted chiral

multiplet, defined by Σ = D̄+D−U/
√

2, with component expansion

Σ = σ − i
√

2θ+ζ̄+ − i
√

2θ̄−ζ− +
√

2θ+θ̄−(D − iu01) + . . . . (2.42)

The fields σ, ζ± and D are all auxiliary. Their role will become clear shortly.

With the exception of a single integration constant t, the dynamics of a k = 1 vortex

string is fixed entirely by the symmetries of the theory. In particular, the SU(Nc)diag

5The one deviation from standard notation is to label the complex auxiliary fields in each chiral multiplet

as G. This distinguishes them from the auxiliary F fields in four-dimensions.
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symmetry of (2.5) descends to an SU(Nc) global symmetry on the worldsheet, under which

the Φi transform in the fundamental Nc representation. The resulting dynamics is given

by

Lvortex =

∫

d4θ T Z̄Z +

Nc
∑

i=1

Φ̄ie
2UΦi +

it

2
√

2

∫

dθ+dθ̄− Σ (2.43)

where T = 2πv2 is the tension of the vortex, while

t = ir +
θ

2π
(2.44)

is the integration constant that needs to be fixed, and plays the role of a complexified

worldsheet FI parameter. After integrating out the auxiliary fields GZ and Gi, the purely

bosonic part of the worldsheet Lagrangian reads,

Lbose = T |∂mz|2 +

Nc
∑

i=1

(

|Dmφi|2 − 2|σ|2|φi|2
)

+ D

(

Nc
∑

i=1

|φi|2 − r

)

+
θ

2π
u01. (2.45)

Here the φi fields carry charge +1 under the gauge symmetry, with Dφi = ∂φi − iuφi. Di-

viding out by this symmetry imposes the identification (2.13): φi → eiαφi. Meanwhile, the

D-field in this Lagrangian plays the role of a Lagrange multiplier, imposing the condition

(2.12):
∑

i |φi|2 = r. The value of r is fixed by the requirement that the kinetic terms for

φi are canonical. One finds the result,

r =
2π

e2
. (2.46)

This result was first shown using a brane construction in [1], and later re-derived by ex-

plicitly computing the overlap of zero modes6 in [10]. Similarly, it can be shown that

the four-dimensional θ-angle descends to a worldsheet θ-angle [4, 10]. The end result is

that worldsheet complexified FI parameter t is identified with the bulk complexified gauge

coupling τ (2.1):

t = τ . (2.47)

We now turn to the fermionic part of the worldsheet Lagrangian, given by

Lfermi = 2iT (χ̄−∂+χ− + χ̄+∂−χ+) + 2i

Nc
∑

i=1

(

ξ̄−iD+ξ−i + ξ̄+iD−ξ+i

)

(2.48)

−
√

2

Nc
∑

i=1

(

σ̄ξ̄+iξ−i + σξ̄−iξ+i + φ̄i(ξ−iζ+ − ξ+iζ−) + φi(ζ̄−ξ̄+i − ζ̄+ξ̄−i)
)

6This follows by taking the time dependent ansatz for the orientational modes: DtQi = δQi and F0z =

δAz, with δφi = φ̇i. Inserting this into the four dimensional kinetic terms gives,
Z

dx1dx2

„

1

2e2
F 2

0i + |DtQi|
2

«

=

Z

dx1dx2

„

1

e2
|Diq|

2 + v2(q − 1)2(q + 1)2
«

|Dtφi|
2

r
=

2π

e2

|Dtφi|
2

r

where the integral is recognized as the same one that appears in computing the vortex tension.
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The fermions ξ±i both have charge +1 under the U(1) gauge symmetry, which is now seen to

implement the full identification (2.37): φi → eiαφi and ξ± → eiαξ±. The vector multiplet

fermions ζ± have no kinetic term and act as Grassmannian Lagrange multipliers, imposing

the constraint (2.38):
∑

i φ̄iξ±i = 0. Finally, the role of σ is to mediate a four-fermi

interaction for the super-orientation modes. Upon integrating out σ, we have

L4−fermi = −2|σ|2|φi|2 −
√

2σ̄ξ̄+iξ−i −
√

2σξ̄−iξ+i = −|ξ̄−iξ+i|2
r

. (2.49)

Four-fermi terms of this kind are typical for soliton dynamics in supersymmetric theories.

We pause here to review how they arise. In deriving the Dirac equations (2.26) and (2.27)

we set A = Q̃i = 0. This is valid in the background of the bosonic vortex. However, it is no

longer true in the presence of fermions since fermi bilinears act as a source for these fields.

For example, the Yukawa couplings involving A† contribute to the equation of motion,

D2A + i
√

2[λ, η] −
√

2e2 ¯̃ψiψ̃i + e2{QiQ
†
i + Q̃†

i Q̃i, A} = 0 (2.50)

The solution to this equation then feeds back into the Dirac equations (2.25) and must be

solved iteratively, order by order in the number of Grassmannian collective coordinates.

This is a finite, but somewhat complicated procedure (see [17] for a simple quantum me-

chanical model where it may be carried through to completion). Thankfully, the end result

(2.49) is dictated by supersymmetry.

2.4.1 Symmetries

The four-dimensional N = 2 theory has two U(1) R-symmetries7 that we will call U(1)R
and U(1)V . The charges of the various fields under U(1)R × U(1)V are listed in the table.

A λ η Q Q̃ ψ ψ̃

U(1)R 2 1 1 0 0 -1 -1

U(1)V 0 1 -1 1 1 0 0 .

Both of these symmetries descend to the vortex worldsheet, where they appear as the

two R-symmetries of the N = (2, 2) superalgebra. The action on the fermionic collective

coordinates of the vortex can can be read directly from (2.33). We have

σ ζ+ ζ− φ ξ+ ξ− z χ+ χ−

U(1)R 2 -1 1 0 -1 1 0 -1 1

U(1)V 0 1 1 0 -1 -1 0 -1 -1

U(1)Z 0 1 1 0 -1 -1 2 1 1 .

The U(1)R symmetry is axial; it suffers an anomaly in the quantum theory of the vortex

(as, indeed, does the U(1)R in four-dimensions). In contrast U(1)V is a vector R-symmetry

on the worldsheet.

The vortex theory also includes a further global U(1)Z symmetry, which arises from

rotating the vortex string in the z = x1 + ix2 plane. The charges of the worldsheet fields

7In the absence of the FI parameter v2, the theory has an SU(2)R symmetry, under which (λ, η) and

(Q, Q̃†) both transform as doublets. The FI parameter breaks SU(2)R → U(1)V .
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under U(1)Z are listed in the table and follow from (2.34) and (2.36). There exists a

suitable linear combination of U(1)Z and U(1)V which simply rotates the phase of the

chiral multiplet Z, leaving all other fields invariant.

There are other, translational, symmetries of the worldsheet theory that reflect the fact

that z and χ± are all Goldstone modes, arising from broken translation and supersymmetry

invariance respectively. In both cases, this ensures they have only derivative couplings. In

particular, it is the existence of these symmetries that prevents the Goldstino modes χ±

from appearing in the four-fermi term (2.49).

2.5 N = 2 preserving deformations

So far we have described vortices in only the simplest N = 2 theory with Nf = Nc.

There are a number of ways to deform and augment our theory that preserve N = 2

supersymmetry. Here we list them and describe their effect on the worldsheet. We postpone

until section 4 a discussion of deformations that break the four dimensional supersymmetry

to N = 1.

2.5.1 Adding masses

The simplest deformation of our theory that preserves N = 2 supersymmetry is to add

a complex mass parameter mi for each hypermultiplet. The superpotential (2.2) now

becomes

WN=2 =
√

2

Nf
∑

i=1

Q̃i(A − mi)Qi. (2.51)

The vacuum (2.4) survives only if we turn on the adjoint scalar field A to cancel the F-term

contributions,

Qa
i = vδa

i , Q̃i = 0 , A = diag(m1, . . . ,mNc). (2.52)

The vortex moduli space does not fare well under this deformation. It can be simply

shown that the masses mi lift the internal CPNc−1 vortex moduli space, leaving behind

Nc distinct, isolated vortex solutions, each of which carries magnetic flux in a different

diagonal U(1) subgroup of the U(Nc) gauge group, supported by a different Qi winding at

infinity.

It was shown in [18, 3, 4] that the 4d masses mi induce “twisted masses” [19] for the

fields on the vortex worldsheet. In the language of N = (2, 2) superfields, this deformation

replaces the standard kinetic terms for Φi by

Nc
∑

i=1

Φ̄ie
2UΦi −→

Nc
∑

i=1

Φ̄i exp
(

2U − 2θ−θ̄+mi − 2θ+θ̄−m†
i

)

Φi. (2.53)
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In terms of components, the vortex theory (neglecting for now the Z multiplet whose

dynamics remains unchanged) becomes,

Lvortex =
Nc
∑

i=1

(

|Dmφi|2 + |Fi|2 − 2|σ − mi|2|φi|2
)

+ D

(

Nc
∑

i=1

|φi|2 − r

)

+
θ

2π
u01

+

Nc
∑

i=1

2i
(

ξ̄−iD+ξ−i + ξ̄+iD−ξ+i

)

−
√

2(σ̄ − m̄i)ξ̄+iξ−i −
√

2(σ − mi)ξ̄−iξ+i

−i
√

2

Nc
∑

i=1

(

φ̄i(ξ−iζ+ − ξ+iζ−) + φi(ζ̄−ξ̄+i − ζ̄+ξ̄−i)
)

. (2.54)

Note that the masses mi break the U(1)R symmetry, both in four-dimensions and on the

vortex worldsheet. The twisted masses on the worldsheet have the desired effect of lifting

the CPNc−1 moduli space of the vortex theory, leaving behind Nc isolated vacua given by

|φi|2 = rδij , σ = mj j = 1, . . . , Nc. (2.55)

These different vacua of the worldsheet theory are identified with the different vortex

solutions in four-dimensions. Kinks interpolating between these vacua on the worldsheet

correspond to magnetic monopoles in four-dimensions, confined to lie on the vortex string

by the Meissner effect [18].

2.5.2 Adding flavors

We now consider the theory with Nf > Nc fundamental hypermultiplets. The D-term and

F-term vacuum conditions in four-dimensions read

Nf
∑

i=1

QiQ
†
i − Q̃†

i Q̃i = v2 and

Nf
∑

i=1

QiQ̃i = 0. (2.56)

When mi = 0, there are no further conditions, and there is a 2Nc(Nf − Nc) dimensional

Higgs branch of the theory. For the purposes of this section, we place ourselves in the

particular vacuum Q̃i = 0 and

Qa
i = vδa

i a, i = 1, . . . Nc (2.57)

with Qi = 0 for i = Nc+1, . . . , Nf . This is to be supplemented by A = 0. If we now turn on

masses for the hypermultiplets, the vacuum (2.57) survives, with A = diag(m1, . . . ,mNc).

Vortices in theories with Nf > Nc have a rather different character than those in the

Nf = Nc theory. The most noticeable difference is that they gain extra bosonic collective

coordinates, among them a scale size. These additional collective coordinates are non-

normalizable when mi = 0 [20, 21] but become normalizable when finite masses mi are

turned on for i = Nc + 1, . . . , Nf [22]. Vortices of this kind are sometimes referred to as

semi-local vortices: a review of these objects in Abelian theories can be found in [23], while

a detailed discussion in non-Abelian theories was given in [22].
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An effective dynamics for the vortex worldsheet in theories with Nf > Nc was proposed

in [1], based on a D-brane construction. It is once again an N = (2, 2) supersymmetric

U(1) gauge theory, now with Nc chiral multiplets Ψi of charge +1 and a further (Nf −Nc)

chiral multiplets Ψ̃j of charge −1. The D-term for this theory reads

D =

Nc
∑

i=1

|φi|2 −
Nf−Nf
∑

j=1

|φ̃j |2 − r = 0 (2.58)

which, together with the gauge action φi → eiαφi and φ̃i → e−iαφ̃i, defines the Higgs

branch of the vortex theory. This Higgs branch is conjectured to coincide the vortex moduli

space. As in the previous section, assigning complex masses mi to the four dimensional

hypermultiplets induces twisted masses mi, i = 1, . . . , Nc for the Φi fields, and twisted

masses m̃j = mj+Nc, j = 1, . . . , Nf − Nc for Φ̃j .

The presence of the negatively charged fields φ̃j means that the moduli space (2.58)

is now non-compact, corresponding to the scaling mode of the vortex. Note however that

the natural metric on the Higgs branch does not coincide with the natural metric on the

vortex moduli space. In particular, the non-normalizability of the scaling modes as mi → 0

is not reproduced in this model. Nonetheless, it has been shown that the vortex theory

(2.58) does indeed correctly capture the quantum dynamics of the vortex string [4, 7].

Higgs expectation values. When Nf > Nc and mi = 0, the vacuum conditions (2.56) in

the four-dimensional theory have a moduli space of solutions. We may ask what happens

to the vortex string as we change the expectation values of Qi and Q̃i such that (2.56)

remains satisfied. The answer to this question was given in [7]: turning on expectation

values for Q̃i induces a superpotential on the vortex string worldsheet. For completeness,

we briefly describe this deformation here.

First some notation: define the gauge invariant meson operator

M j
i ≡ Q̃jQi. (2.59)

It is not hard to show that in four-dimensional vacua for which M 6= 0, the space of BPS

vortex solutions is greatly reduced. The key point is that a vacuum expectation value for

Q̃ does not allow a BPS vortex to live in the associated part of the gauge group. This

follows from the mathematical fact that there is no holomorphic line bundle of negative

degree. In a more physical language, a direct analysis of the vortex equations reveals that

BPS vortices do not exist in U(1) theories if both negatively and positively charged fields

gain an expectation value [24, 25]. The upshot of this is that the vortex moduli space is

partly lifted in four dimensional vacua for which M 6= 0. It was shown in [7] that this effect

is captured on the vortex worldsheet by the introduction of a superpotential of the form,

W(2,2) ∼
Nf
∑

i=1

Nf−Nc
∑

j=1

M j+Nc

i Φ̃jΦ
i. (2.60)
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2.6 Multiple vortices

NS5−brane

c

f

NS5−brane

k  D2−branes

2

c

N  D4−branes

N  − N  D4−branes

rπ2   /e   = 

Figure 2: The brane configuration.

So far we have focussed on the theory for

a single vortex string for which, at least in

the case Nf = Nc, symmetries are sufficient

to dictate the dynamics. In [1], a D-brane

construction was used to derive a worldsheet

theory which describes the interactions of

k > 1 parallel vortex strings. The D-brane

construction starts with the usual Hanany-

Witten set-up for N = 2 four-dimensional

gauge theories [26, 27], consisting of D4-

branes attached to parallel NS5-branes. Sep-

arating the NS5-branes in the direction out

of the page induces the FI parameter v2. The vortex strings arise as stretched D2-branes

as shown in figure 2. The worldvolume theory of k vortex strings is given by an N = (2, 2)

U(k) non-Abelian gauge theory with matter content,

U(k) Vector Multiplet U + Adjoint Chiral Multiplet Z

+ Nc Fundamental Chiral Multiplets Φi

+ Nf − Nc Anti-Fundamental Chiral Multiplets Φ̃j.

The complexified worldsheet FI parameter is again equated to the 4d complexified gauge

coupling, t = τ , or

ir +
θ2d

2π
=

2πi

e2
+

θ4d

2π
. (2.61)

The D-term condition for the worldsheet theory is now u(k) valued and is given by,

Nc
∑

i=1

φiφ
†
i −

Nf−Nc
∑

j=1

φ̃†
jφ̃j + T [z, z†] = r 1k. (2.62)

This provides k2 constraints on the 2k(Nf + k) degrees of freedom in φi, φ̃j and z. After

dividing by U(k) gauge transformations, we are left with a 2kNf dimensional manifold

which defines the target space for the vortex string sigma-model. This was conjectured in [1]

to coincide with 2kNf dimensional vortex moduli space. This quotient construction has

subsequently been derived from a direct analysis of the non-Abelian vortex equations [28,

29].

The 4kNc fermionic zero modes of k parallel vortex strings live in the U(k) adjoint

valued χ± and the fundamental ξ±i, subject to the 2k2 complex constraints arising from

the auxiliary fermions ζ±,
∑

i

φiξ̄±i + [z, χ̄±] = 0. (2.63)

In the case of a single k = 1 vortex, these reduce to the constraints (2.38).
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Note that the vacuum moduli space (2.62) inherits a metric from the canonical kinetic

terms for φi and z. This metric is known not to agree with the standard Manton metric [30,

31] on the vortex moduli space (except in the special case k = 1 and Nf = Nc that we

described in detail earlier). This is because the limit in which the d = 1 + 1 gauge theory

on the D2-branes decouples from other stringy modes is different from the limit in which

the D2-branes are described as vortices in the d = 3 + 1 dimensional theory on the D4-

branes; the two descriptions hold in different regimes of validity as we vary the parameters

of the brane set-up. Nonetheless, if one is interested in computing objects protected by

supersymmetry — such as the classical, or quantum, masses of BPS states in the vortex

theory —- it should be valid to work with the gauge linear sigma model. In practice,

this claim has been confirmed only for the k = 1 theory with Nf > Nc. It has also

been confirmed that the intricate topology of the k = 2 vortex string moduli space in the

Nf = Nc = 2 is correctly captured by the gauged linear sigma model [32 – 34].

3. N = (0, 2) supersymmetry

In the previous section we have worked with both N = 1 superfields in four dimensions,

A, Qi and Q̃j, as well as N = (2, 2) superfields in two dimensions, Σ, Φi and Φ̃j. From

now on we will deal with N = (0, 2) supersymmetry in two dimensions. Since this may be

less familiar to some readers we devote this section to a review of the structure of N =

(0, 2) superfields [35, 36] and their relationship to N = (2, 2) theories. The presentation

follows [37] and [38].

3.1 Superfields

N = (0, 2) supersymmetry is generated by two right-moving, and no left-moving, su-

persymmetries. The two chiral supercharges are Q+ and Q̄+. The (0, 2) superspace is

parameterized by the bosonic coordinates y± = (y0 ± y1) and their fermionic partners θ+

and θ̄+. The action of the supersymmetry generators in superspace is given as

Q+ =
∂

∂θ+
+ iθ̄+(∂0 + ∂1)

Q̄+ = − ∂

∂θ̄+
− iθ+(∂0 + ∂1). (3.1)

These commute with the superderivatives,

D+ =
∂

∂θ+
− iθ̄+(∂0 + ∂1)

D̄+ = − ∂

∂θ̄+
+ iθ+(∂0 + ∂1) (3.2)

which satisfy {D+,D+} = {D̄+D̄+} = 0 and {D+, D̄+} = 2i∂+. We now describe the

different superfields of interest.
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Gauge multiplets. We start with the real, adjoint valued, gauge multiplet U , which has

the component expansion

U = (u0 − u1) − 2iθ+ζ̄− − 2iθ̄+ζ− + 2θ+θ̄+D. (3.3)

Already we see the chiral nature of the supersymmetry, since only the combination

u− = u0 − u1 of the two-dimensional gauge field appears in the superfield, together with

a left moving fermion ζ−. The scalar field D will be seen to be auxiliary. The covariant

superderivatives are given by

D+ =
∂

∂θ+
− iθ̄+(D0 + D1)

D̄+ = − ∂

∂θ̄+
+ iθ+(D0 + D1)

where

D0 + D1 = ∂0 + ∂1 − i(u0 + u1)

includes the u+ component of the gauge field, but no fermions. Meanwhile, the gauginos

are included in the remaining covariant superderivative,

D0 −D1 = ∂0 − ∂1 − iU. (3.4)

The field strength lives naturally in a fermi multiplet (which we shall define shortly) given

by the usual commutator of derivatives:

Υ = [D̄+,D0 −D1] = −2
(

ζ− − iθ+(D − iv01) − iθ+θ̄+(D0 + D1)ζ−

)

. (3.5)

Here the field strength is u01 = ∂0u1 − ∂1u0 − i[u0, u1]. The kinetic terms for the gauge

multiplet are then given by integration over all of superspace d2θ = dθ+ dθ̄+,

Sgauge =
1

8g2
Tr

∫

d2y d2θ Υ†Υ

=
1

g2
Tr

∫

d2y

(

1

2
u2

01 + iζ̄−(D0 + D1)ζ− + D2

)

(3.6)

but, in fact, will not be required in the following.

Chiral multiplets. The chiral multiplets of (0, 2) theories are bosonic superfields Φ,

living in any representation R of the gauge group. They satisfy

D̄+Φ = 0. (3.7)

Chiral multiplets contain right-moving fermions ξ+, paired with a complex boson φ. Their

component expansion gives

Φ = φ +
√

2θ+ξ+ − iθ+θ̄+(D0 + D1)φ (3.8)
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where (D0 + D1) is now the usual bosonic covariant derivative. The kinetic terms for the

chiral multiplet are given by the action,

Schiral = − i

2

∫

d2y d2θ Φ̄(D0 −D1)Φ (3.9)

=

∫

d2y
(

−|Dαφ|2 + iξ̄+(D0 − D1)ξ+ − i
√

2φ̄ζ−ξ+ + i
√

2ξ̄+ζ̄−φ + φ̄Dφ
)

.

The scalar field φ couples to the auxiliary field D, to give rise to the usual D-term (Note

that for Abelian theories, if Φ has charge p then one should replace ζ− → pζ− and D → pD

in the above action.).

Fermi multiplets. One novel feature of (0, 2) theories that is not shared by the non-

chiral (2, 2) theories is the existence of a fermionic multiplet Γ, containing only left moving

fermions χ− and no propagating bosons. Like the chiral multiplets, they can live in any

representation R of the gauge group. The fermi multiplet satisfies

D̄+Γ =
√

2E (3.10)

where D̄+E = 0, which can be solved by taking E to be a holomorphic function of chiral

superfields E = E(Φi). The fermi multiplet has component expansion

Γ = χ− −
√

2θ+G − iθ+θ̄+(D0 + D1)χ− −
√

2θ̄+E. (3.11)

Note that the superfield Υ containing the field strength is of this type, with D̄+Υ = 0. In

general, E itself will also have a θ expansion,

E(Φi) = E(φi) +
√

2θ+ ∂E

∂φi
ξ+i − iθ+θ̄+(D0 + D1)E(φi) (3.12)

The kinetic terms for the fermi multiplet are

Sfermi = −1

2

∫

d2y d2θ Γ̄Γ (3.13)

=

(

iχ̄−(D0 + D1)χ− + |G|2 − |E(φi)|2 − χ̄−
∂E

∂φi
ξ+i + ξ̄+i

∂Ē

∂φ̄i

χ−

)

We see that the complex scalar G is an auxiliary field, lacking a kinetic term. Also note

that the function E(φ) appears as a potential term in the Lagrangian.

3.2 Superpotentials

In N = (0, 2) theories the auxiliary field G lives in a fermi multiplet Γ, rather than a

chiral multiplet. A superpotential J(Φi) is a holomorphic function of chiral superfields

and a suitable action may be constructed by integrating terms of the form ΓJ over half of

superspace. Most generally we can introduce a superpotential Ja for each fermi multiplet

Γa,

SJ = − 1√
2

∑

a

∫

d2y dθ+ Γa Ja(Φi)|θ̄+=0 + h.c.

=
∑

a

∫

d2y GaJ
a(φi) +

∑

i

χ−a
∂Ja

∂φi
ξ+i + h.c. . (3.14)
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This integration over half of superspace yields an N = (0, 2) supersymmetric invariant

action if and only if D̄+(ΓaJ
a) = 0, which requires

∑

a

EaJ
a = 0. (3.15)

Of course, the combination ΓaJ
a is also required to be gauge invariant. An important

example of the superpotential is the Fayet-Iliopoulos and theta term which are packaged

in the complex combination t = ir + θ/2π. The interaction can be written as

SDθ =
t

4
Tr

∫

d2ydθ+ Υ|θ̄+=0 + h.c.

= Tr

∫

d2y

(

− rD +
θ

2π
u01

)

. (3.16)

3.3 N = (2, 2) decomposition

It will prove useful for orientation to recall how the more familiar N = (2, 2) superfields

decompose into their N = (0, 2) counterparts. The conventions below are taken from [37].

One can enlarge N = (0, 2) superspace to N = (2, 2) superspace through the addition

of two further fermionic components θ− and θ̄−. The corresponding superderivatives are

D− =
∂

∂θ−
− iθ̄−(∂0 − ∂1) , D̄− = − ∂

∂θ̄−
+ iθ−(∂0 − ∂1). (3.17)

The N = (2, 2) vector multiplet V(2,2) decomposes into an N = (0, 2) vector multiplet V

described in (3.3), together with an N = (0, 2) chiral multiplet Σ. This chiral multiplet

inherits the right moving fermion ζ+ and the complex scalar field σ contained in V(2,2).

It is most simply described by reduction from the N = (2, 2) twisted chiral multiplet

containing the field strength Σ(2,2) = (1/
√

2){D̄+,D−}, in terms of which the N = (0, 2)

chiral multiplet is given by

Σ = Σ(2,2)

∣

∣

θ−=θ̄−=0
. (3.18)

An N = (2, 2) chiral multiplet Φ(2,2) satisfies D̄+Φ(2,2) = D̄−Φ(2,2) = 0. This chiral

multiplet decomposes into an N = (0, 2) chiral multiplet Φ and a fermi multiplet Γ, defined

by

Φ = Φ(2,2)

∣

∣

θ−=θ̄−=0

Γ =
1√
2
D− Φ(2,2)

∣

∣

θ−=θ̄−=0
. (3.19)

If Φ(2,2) transforms under a representation R of the gauge group, then both Φ and Γ

also transform under R. A quick computation yields D̄+Γ = 2iΣΦ, meaning that, in the

notation of (3.10), N = (2, 2) supersymmetry imposes,

E = i
√

2ΣΦ. (3.20)
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The final N = (2, 2) multiplet of interest is a twisted chiral multiplet Σ(2,2), satisfying

D̄+Σ(2,2) = D−Σ(2,2) = 0. Like the N = (2, 2) chiral multiplet, this too decomposes into

an N = (0, 2) chiral multiplet Σ and a fermi multiplet F . They are given by,

Σ = Σ(2,2)

∣

∣

θ−=θ̄−=0

F = − 1√
2
D̄− Σ(2,2)

∣

∣

θ−=θ̄−=0
. (3.21)

Note, however, that from the expansion (2.42), the θ+ component of the N = (0, 2) chiral

multiplet Σ contains the barred fermion, rather than the unbarred fermion,

Σ = σ − i
√

2θ+ζ̄+ − i2θ+θ̄+∂+σ. (3.22)

This subtlety will prove important in what follows. Since twisted chiral multiplets Σ(2,2)

are always uncharged under the gauge group, the corresponding fermi multiplet satisfies

D̄+F = 0.

3.3.1 The vortex theory in N = (0, 2) language

Let us finish this section by describing the N = (2, 2) vortex theory of section 2 in the

language of N = (0, 2) superfields. This will serve to fix notation for what is to come. We

decompose the fields as

N = (2, 2) U(k) Vector Multiplet −→ U(k) Vector Multiplet, U

+ Adjoint Chiral Multiplet Σ

N = (2, 2) Adjoint Chiral Multiplet −→ Adjoint Chiral Multiplet, Z

+ Adjoint Fermi Multiplet Ξ

N = (2, 2) Fund. Chiral Multiplets −→ Fund. Chiral Multiplets, Φi

+ Fund. Fermi Multiplets Γi

N = (2, 2) Anti-Fund. Chiral Multiplet −→ Anti-Fund. Chiral Multiplets, Φ̃j

+ Anti-Fund. Fermi Multiplet Γ̃j

where all the objects on the right are N = (0, 2) superfields. As before, i = 1, . . . , Nc for

Φi and j = 1, . . . Nf − Nc for Φ̃j. Appendix A contains a list of the different component

fields which appear in each of these multiplets.

The N = (2, 2) supersymmetry imposes the relations,

D̄+Ξ = 2i[Σ, Z] , D̄+Γi = 2i(Σ − mi)Φi , D̄+Γ̃j = −2i(Σ − m̃j)Φ̃j (3.23)

(There is no sum over i and j on the right-hand side of these equations). As we have

seen, the right-hand side of each of these equations appears as a potential “|E|2” arising in

equation (3.13). A further contribution to the worldsheet scalar potential arises from the

D-term, which provides the constraint (2.62).
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4. The N = (0, 2) dynamics of vortex strings

It is now time to present new results for the dynamics of vortex strings in theories with

N = 1 supersymmetry. Most of this section is devoted to the discussion of a simple

deformation of the N = 2 theory by the addition of a superpotential. In section 4.7 we

discuss a second class of deformations.

4.1 Adding a superpotential

We start by considering a “Dijkgraaf-Vafa”-like deformation [39], breaking N = 2 to N = 1

through the addition of a superpotential for the adjoint superfield A. The superpotential

now reads

W =
√

2

Nf
∑

i=1

Q̃i(A − mi)Qi + Ŵ(A) (4.1)

which gives rise to the scalar potential

V4d =
e2

2
Tr

( Nf
∑

i=1

QiQ
†
i − Q̃iQ̃

†
i − v21Nc

)2

+ e2Tr|
Nf
∑

i=1

Q̃iQi − ∂Ŵ/∂A|2 (4.2)

+

Nf
∑

i=1

(

Q†
i{A − mi, Ā − m̄i}Qi + Q̃i{A − mi, Ā − mi}Q̃†

i

)

+
1

2e2
Tr|[A,A†]|2.

Let’s look at how this superpotential affects the vacuum structure. If Ŵ is linear in A then

there is merely a constant piece in the F-term above and the Lagrangian still preserves

N = 2 supersymmetry. We can perform an SU(2)R rotation of the scalar fields (Qi, Q̃
†
i )

to bring the Lagrangian back to the form (2.3). We will assume that Ŵ does not contain

a linear piece. In this case, for a generic superpotential Ŵ(A), Q̃i must turn on in the

vacuum. Without loss of generality, we choose the vacuum to be of the form,

Qa
i = pi δa

i , Q̃a
i = p̃i δ

a
i , A = diag(m1, . . . ,mNc) (4.3)

with

|pi|2 − |p̃i|2 = v2 and p̃ipi =
∂Ŵ
∂a

∣

∣

∣

∣

∣

mi

for each i = 1, . . . , Nc (4.4)

4.2 What becomes of the vortex?

Our goal is to understand how this deformation affects the dynamics of the vortex string.8

Let us firstly consider the case with distinct masses mi. Before adding the superpotential

Ŵ there were Nc different BPS vortices, each living in a different U(1) ⊂ U(Nc) and each

with a different Qi, i = 1, . . . , Nc carrying the asymptotic winding. What changes in the

presence of Ŵ?

8Vortices in a similar system were studied in [11], but in the limit with v2 = 0, so that the vortex is

built around a linear piece of Ŵ . This gives rise to somewhat different physics from that considered here.
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The crucial point to note is that something rather special happens when the superpo-

tential is tuned so that a critical point coincides with one of the masses, say mk for some

k = 1, . . . , Nc

∂Ŵ(a)

∂a

∣

∣

∣

∣

∣

a=mk

= 0. (4.5)

If this is case, the vacuum equation (4.3) sets Q̃k = 0. There is then no obstacle in

constructing the kth vortex in which Qk winds; indeed the N = 2 vortex solution remains

a solution in the deformed theory.

Vortices of this type in N = 1 theories are often called D-term vortices (the name

arises because the symmetry breaking is induced by a FI parameter, or D-term). It was

shown in [40] that such objects are 1/2 BPS, preserving two of the four supercharges of the

four-dimensional N = 1 theory. In two dimensions, there are two distinct superalgebras

with two supercharges: the non-chiral (1, 1) algebra, and the chiral (0, 2) algebra. Given

that the previous section was devoted to a review of N = (0, 2) theories, the reader may

guess this will be relevant for the vortex string. Let’s now see that this is indeed the

case [40]. The N = 1 supersymmetry transformations for the vector multiplet fields are,

δAµ = −iǭσµλ + iλ̄σµǫ

δD = ǭσ̄µDµλ + Dµλσ̄µǫ

δλ = 1
2σµνǫFµν + iǫD. (4.6)

For each chiral multiplet Qi, they take the form

δQi =
√

2ǫψi

δFi = i
√

2ǭ /̄Dψi − 2iǭλQi

δψi =
√

2ǫFi + i
√

2( /DQi)ǭ. (4.7)

Similar transformations also hold for the chiral multiplets Q̃i with the appropriate sub-

stitutions. Finally, the supersymmetry transformations for the adjoint chiral multiplet A

take the form,

δA =
√

2ǫη

δF = i
√

2ǭ /̄Dη − 2iǭ[λ,A]

δη =
√

2ǫF + i
√

2( /DA)ǭ. (4.8)

The key point here is that the vortex equations (2.6), together with the requirement that

Fi = F = 0, provide solutions to δλ = δψi = δη = 0. The latter condition F = 0 is

trivially satisfied when (4.5) holds, for then Q̃i = 0, while A remains constant. To see which

supersymmetries are preserved in this case, it will suffice to examine the δψi transformation.

Using (2.28), in the background of a stationary vortex so that D+ = D− = 0, we have

δψ−i = −2
√

2i(DzQi)ǭ− = 0 and δψ+i = 2
√

2i(Dz̄Qi)ǭ+. (4.9)
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In the background of a vortex, with the scalar field satisfying DzQi = 0, we learn that ǭ−
is the preserved supersymmetry; it descends to provide the supersymmetry variation pa-

rameter on the worldsheet. Meanwhile, ǭ+ is the broken supersymmetry which generates a

single Goldstino mode on the worldsheet. In our notation (2.34), we have ǭ+ = χ+/4. (The

χ− collective coordinate in (2.34) arises from the second supersymmetry transformation of

the N = 2 theory. Its fate in our N = 1 theory will be discussed shortly). The spinors

ǫ± have definite, and opposite, chirality on the worldsheet. This is the statement that the

worldsheet theory preserves chiral N = (0, 2) supersymmetry, rather than N = (1, 1).

We have seen that, in the special case that a critical point of Ŵ coincides with a mass

(4.5), there exists at least one BPS vortex preserving N = (0, 2) supersymmetry. But what

happens if this is not the case? If (4.5) is not satisfied, then there can be no BPS vortex

solutions. To see this, note that (4.4) tells us that Q̃k gains an expectation value in the

4d vacuum. This means it cannot now remain constant but, must wind asymptotically to

ensure that its kinetic term remains finite. A putative BPS vortex must now satisfy,

DzQi = DzQ̃i = 0. (4.10)

Yet Qi and Q̃i have opposite charges. A standard theorem in mathematics — that a line

bundle of negative degree has no non-zero holomorphic section — states that there can

only be simultaneous solutions to these equations when either Q̃i = 0 or Qi = 0. (See, for

example, equation (3.43) of [37]). One can reach the same conclusion by noting that A

is now also sourced in the vortex background and δη 6= 0.9 Of course, simple topological

arguments imply that vortex strings still exist. However, they must satisfy the full second

order equations of motion, rather than the first order Bogomolnyi equations, and their

tension is strictly greater than the BPS bound T = 2πv2.

4.3 Vortex dynamics

In section 2, we described the N = (2, 2) U(k) theory on the vortex worldsheet that captures

the dynamics of k parallel vortex strings in N = 2 four dimensional gauge theories. We

would like to understand how the worldsheet theory reacts to the superpotential Ŵ(A),

breaking the four dimensional supersymmetry from N = 2 to N = 1. We have seen above

that the vortices in the theory with superpotential Ŵ(A) are classically BPS, preserving

N = (0, 2) supersymmetry, when equation (4.5) holds; otherwise there are no BPS vortices.

We would like to see this from the worldsheet.

In fact, there is a unique deformation on the vortex worldsheet that preserves

N = (0, 2) supersymmetry and reproduces the expected vacuum structure described above.

Recall from section 3.2 that superpotentials in N = (0, 2) theories are constructed from

fermi multiplets. The only such multiplet with a suitable transformation under the U(k)

gauge symmetry is Ξ, containing χ− and the complex auxiliary field GZ . The worldsheet

9The lack of BPS vortices in this case is entirely analogous to the statement that F -term vortices are

not BPS in N = 1 theories [40]. In our set-up, the value of ∂Ŵ/∂a evaluated at a = mk plays the role of

the constant in the F-term in [40].
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deformation is given by the N = (0, 2) superpotential,

SW ≡ − 1√
2
Trk

∫

dθ+ Ξ J(Σ)

∣

∣

∣

∣

θ̄+=0

− h.c.

= − 1√
2
Trk

∫

dθ+ Ξ
∂Ŵ(Σ)

∂Σ

∣

∣

∣

∣

∣

θ̄+=0

− h.c. (4.11)

(up to some overall, unfixed, constant of proportionality). Note that a superpotential of

this form is a viable holomorphic term since D̄+Ξ = 2i[Σ, Z] ≡ i
√

2EΞ and

Tr EΞJ =
√

2Tr

(

[Σ, Z]
∂Ŵ(Σ)

∂Σ

)

= 0 (4.12)

which satisfies the requirement (3.15). In principle there could also be σ-dependent defor-

mations of the kinetic terms for Λi and Ξ. As is common in supersymmetric field theories,

we will have less control over these “D-term” deformations, but will see that the superpo-

tential (4.11) captures much of the important physics.

The deformation (4.11) has implications for both the bosonic and fermionic zero modes

of the vortex strings. We defer a discussion of the fermions to the next subsection; we start

here by studying the bosonic zero modes. The extra bosonic term on the vortex worldsheet

arising from (4.11) is a potential,10

V2d = Trk

(

T |GZ |2 + GZ
∂Ŵ(σ)

∂σ
+ h.c.

)

=
1

T
Trk

∣

∣

∣

∣

∣

∂Ŵ(σ)

∂σ

∣

∣

∣

∣

∣

2

. (4.13)

We will now show that this gives the expected vacuum structure by studying the k = 1

vortex theory in some detail; the extension to k > 1 then follows.

4.3.1 An example: k = 1 with Nf = Nc

To illustrate the role of the superpotential (4.11), let’s look at the familiar k = 1 theory of a

single vortex in the case with Nf = Nc flavors. As we discussed in detail in section 2, when

Ŵ = 0 the internal moduli space is CPNc−1 with φi providing homogeneous coordinates.

Once we turn on the superpotential Ŵ , the bosonic part of the worldsheet theory is given

by

Lbose = T |∂mz|2+

Nc
∑

i=1

(

|Dmφi|2−2|σ−mi|2|φi|2
)

+D

(

Nc
∑

i=1

|φi|2−r

)

− 1

T

∣

∣

∣

∣

∣

∂Ŵ
∂σ

∣

∣

∣

∣

∣

2

+
θ

2π
u01.

In the presence of distinct, non-zero masses mi, this worldsheet theory has a supersym-

metric ground state (i.e. with vanishing vacuum energy) at

|φj |2 = rδij , σ = mi (4.14)

10A note on dimensions: In 4d, [Ŵ(A)] = 3, which ensures that the scalar potential has the correct

dimensions: [|∂Ŵ/∂A|2] = 4. In 2d the auxiliary field has dimension [σ] = 1, so that [∂Ŵ/∂σ] = 2. The

presence of the vortex tension, with [T ] = 2, means that the worldsheet scalar potential (4.13) has the

correct scaling for the two dimensional worldsheet.

– 25 –



J
H
E
P
0
5
(
2
0
0
7
)
0
0
5

only if Ŵ(σ) has a critical point at σ = mi

∂Ŵ(σ)

∂σ

∣

∣

∣

∣

∣

σ=mi

= 0. (4.15)

This coincides with the expectations of the previous section: BPS vortices only exist when

(4.15) holds.

When the masses do not coincide with the critical points, and there are no BPS vortices,

the potential |∂Ŵ/∂σ|2/T determines the vacuum energy of the vortex string. One could

try to compare this to the excess tension of the non-BPS vortex string, above the bound

T = 2πv2, but this unfortunately suffers from the previously mentioned ambiguity in

classical wavefunction renormalization for χ− which also affects the coefficient in front of

|GZ |2.
If the hypermultiplet masses vanish, mi = 0, then the story is a little different. We

may now set σ = 0 in the vacuum (recall that we assumed Ŵ does not contain a linear

piece, so σ = 0 is guaranteed to be a critical point). The full CPNc−1 bosonic moduli space

is now restored. This is in agreement with expectations from four dimensions, where we

may happily construct any vortex string, built around the vacuum with A = Q̃i ≡ 0. We

conclude that the superpotential Ŵ(A) does not affect the bosonic zero modes in this case,

a point made previously in [12]. However, the superpotential does still affect the fermi zero

modes. We now turn to a study of these.

4.4 Fermions

We will study the fermions in the case with vanishing hypermultiplet masses mi = 0. Of

all the Dirac equations in (2.25), only that for η is modified by the superpotential. It now

reads

− i

e2
/̄Dη − i

√
2

e2
[A, λ̄] −

√
2Q̃†

i ψ̄i −
√

2¯̃ψiQ
†
i −

∂2Ŵ(A)

∂A2
η̄ = 0. (4.16)

In the background of the vortex, we may again set A = Q̃i = 0. This means that all

right-moving fermi zero modes — those donated by λ+ and ψ̄+i — remain the same as in

the N = (2, 2) case, given by solutions to
√

2Dzλ+ = −e2 Qiψ̄+i ,√
2Dz̄ψ̄+i = −Q†

iλ+. (4.17)

If the lowest order term in the superpotential Ŵ is cubic or higher, then the left-moving

fermi zero modes are similarly unaffected. However, if the superpotential Ŵ(A) includes a

quadratic mass term

Ŵ(A) = µ2A
2 + . . . (4.18)

then the equations for the left moving fermi zero modes become
√

2iDz̄η− = −e2 ¯̃ψ−iQ
†
i −

√
2µ2η̄−√

2iDz
¯̃ψ−i = η−Qi. (4.19)
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These equations are no longer related to the bosonic zero mode equations (2.16): this

is to be expected since, in breaking to N = 1 supersymmetry, we have lost the half of

supersymmetry which ensured the correspondence between bosonic zero modes and left-

moving fermionic zero modes. Nevertheless, as stressed in [12], the Dirac equations (4.19)

must still admit the same number of solutions as the equations with µ2 = 0. This follows

from the fact that the zero modes are chiral on the worldsheet, and cannot gain a mass

through a deformation. For a single k = 1 vortex in the U(2) gauge theory, (4.19) was

analyzed in [12], both perturbatively in µ2ρ, as well as in the large µ2 limit.

To summarize, we learn that the deformation leaves the fermi zero modes untouched

unless µ2 6= 0, in which case it deforms the profile of the left-moving fermi zero modes

only. However, the number of zero modes on the worldsheet remains the same. Let us now

compare this with the predictions from the proposed worldsheet deformation (4.11).

Implications for worldsheet fermions. In the presence of the superpotential Ŵ, the

fermionic terms in the U(k) worldsheet theory read11

Lfermi = 2iT Trk (χ̄−D+χ− + χ̄+D−χ+) + 2i

Nc
∑

i=1

(

ξ̄−iD+ξ−i + ξ̄+iD−ξ+i

)

−
√

2Trk

(

[χ̄−, [σ, χ+]] − [χ̄+, [ζ̄−, z]] − [ξ̄−, [ζ̄+, z]]
)

+ h.c. (4.20)

−
√

2
Nc
∑

i=1

(

ξ̄−iσξ+i − ξ̄+iζ̄−φi + ξ̄−iζ̄+φi

)

+ Trk

(

χ−
∂2Ŵ(σ)

∂σ2
ζ̄+

)

+ h.c. .

The N = (0, 2) superpotential is responsible for only the final term. Integrating out the

auxiliary fermions ζ± again gives constraints on the dynamical fermions,

∑

i

φiξ̄+i + [z, χ̄+] = 0 and
∑

i

φiξ̄−i + [z, χ̄−] =
∂2Ŵ(σ)

∂σ2
χ−. (4.21)

We see that the right-moving fermions are unaffected by the superpotential, in agreement

with the Dirac equations (4.17). Similarly, if Ŵ has no quadratic term, so µ2 = 0, then

the left-moving constraints are also left unchanged if we set σ = 0 (we shall see the role

played by a non-zero σ shortly). However, when µ2 6= 0, setting σ = 0 still leaves deformed

constraints on the left-moving fermions. For example, in the case of a single k = 1 vortex,

the constraints read

Nc
∑

i=1

φiξ̄−i = µ2χ−. (4.22)

It’s worth making a comment on this point. In the N = (0, 2) theory, we have defined

the left-moving worldsheet fermions such that their kinetic terms are diagonal: χ̄−∂+χ− +

ξ̄−iD+ξ−i. The constraint (4.22) holds in this basis. It is always possible to redefine the

11As we mentioned previously, the deformation from N = 2 to N = 1 may also induce a finite wavefunc-

tion renormalization of the left-moving fermion kinetic terms. We will not consider this here.
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fermions so that the constraint (4.22) reverts to the original N = (2, 2) constraint (2.38),

ξ̄′−i = ξ̄−i −
µ2

r
φ̄iχ− ⇒

Nc
∑

i=1

φi ξ̄′−i = 0. (4.23)

This will then lead to a non-diagonal form for the fermion kinetic terms.

It was argued in [12] that, even in the presence of the four-dimensional superpotential

Ŵ(A) = µ2A
2, the worldsheet theory of the vortex string still retains N = (2, 2) super-

symmetry. This argument was based on the survival of the left-moving fermi zero modes,

and the lack of a suitable N = (0, 2) deformation of the CPNc−1 sigma-model. We dis-

agree with this conclusion. The vortex worldsheet theory is not described by a CPNc−1

sigma-model, but rather by a C × CPNc−1 sigma-model and, as we have seen, there is a

suitable deformation of the latter in which χ−, the left-moving fermion in C, mixes with

ξ−i. Moreover, this mixing is necessary to correctly capture the bosonic properties of the

vortex with arbitrary superpotential and masses. As we explained above, to see this mixing

between χ− and ξ−i from an explicit analysis of the fermions would require us to solve the

fermi zero mode equations (4.19), and take their overlap to determine both the kinetic

terms and the constraint condition for the Grassmann collective coordinates of the vortex.

4.5 Symmetries and other aspects

We now discuss various further aspects of the worldsheet theory, starting with an analysis

of the symmetries. We will show that the worldsheet superpotential has the correct prop-

erties under R-symmetry transformations to be induced by the superpotential Ŵ(A). The

addition of the superpotential Ŵ(A) breaks both the U(1)R and the U(1)V symmetries in

four dimensions. If the superpotential takes the form,

Ŵ(A) =
∑

n=2

µnAn. (4.24)

Treating the parameters µn as spurion fields, the symmetry is restored if µn carries charge

(2 − 2n, 2) under U(1)R × U(1)V . Let us check that these charges descend to the world-

sheet theory. The deformation (4.11) once again destroys both U(1)R and U(1)V on the

worldsheet, this time through the presence of the worldsheet fermi interactions. The final

term in (4.20) is,12

∑

n

n(n − 1)µn Trk

(

χ−σn−2 ζ̄+

)

. (4.25)

Examining the table in section 2.4.1, we see that the U(1)R ×U(1)V worldsheet symmetry

is again restored if µn is assigned charges (2−2n, 2), in agreement with the analysis in four

dimensions.

Note that the U(1)Z symmetry on the worldsheet, which arises from rotational invari-

ance in the z = x1 + ix2 plane, is left unbroken by the deformation (4.25) as, indeed, it

must be.

12The presence of ζ̄+ in this expression, rather than ζ+, is crucial in this analysis. It follows from the

component expansion (3.22) and ultimately from the fact Σ arises from the decomposition of a (2, 2) twisted

chiral multiplet as opposed to a (2, 2) chiral multiplet.
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Discrete symmetries. One can also check that the deformation on the worldsheet is

consistent with the discrete symmetries of the bulk theory.13 We start by considering the

action of parity, defined by

P : xi → −xi i = 1, 2, 3 (4.26)

The original N = 2 theory can be written in terms of Dirac spinors. For example, the

adjoint Dirac spinor is Ψ = (λ, η̄)T . Parity maps P : Ψ → γ0Ψ, or

P : λ ↔ η̄ and P : ψi ↔ ¯̃ψi (4.27)

while for the complex adjoint scalar P : A → A⋆. (The imaginary part is really a pseu-

doscalar). Because the z = x1 + ix2 → −z part of the parity transformation can be undone

by the rotation U(1)Z on the worldsheet, we may restrict attention to the simpler parity

transformation P : x3 → −x3, with x1 and x2 untouched. This is the parity action under

which the vortex string remains invariant. It must therefore descend to the worldsheet.

Indeed, as we reviewed in section 2, (λ, ψ) donate right-moving zero modes χ+ and ξ+i,

while (η̄, ¯̃ψ) donate left-moving zero modes χ− and ξ−i. So the action of parity (4.27) in

the bulk also exchanges left and right-movers on the worldsheet.

So much for the N = 2 theory. What happens in the presence of the N = 1 deforma-

tion? This pure parity symmetry (4.27) is broken in the 4d theory because the interactions

of λ and η are different. This is also seen in our N = (0, 2) worldsheet theory where the

interactions of left and right movers differ.

The 4d N = 2 theory is also invariant under CP . Under charge conjugation, C : B →
−B and the vortex is mapped onto the anti-vortex. So this cannot be a symmetry of the

worldsheet. However, under the particular parity transformation

P ′ : x2 → −x2 (4.28)

with x1 and x3 invariant, we also have B3 → −B3. Moreover, the complex coordinate z

transverse to the vortex string is mapped to P ′ : z → z⋆. This ensures that the bosonic

vortex solution is invariant under CP ′. For example, we have

DzQi
C−→ DzQ

† P ′

−→ Dz̄Q
† (4.29)

so the Bogomolnyi equation DzQ = 0 remains invariant under CP ′. When acting on the

fermions, CP ′ sends Weyl spinors to their complex conjugates,

CP ′ : ψi → −iσ2ψ̄i , CP ′ : λ → −iσ2λ̄ , etc. (4.30)

This symmetry also descends to the worldsheet, where it acts as complex conjugation, as

can be checked explicitly from the zero mode expressions of section 2. We have,

CP ′ : φi → φ̄i and CP ′ : ξ±i → ξ̄±i etc (4.31)

13We thank M. Shifman and A. Yung for stressing the importance of this.
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Note that, just as CP ′ in the 4d theory didn’t exchange λ and η̄, so this symmetry on the

worldsheet doesn’t send left-movers to right-movers. This can be traced to the fact that

the action CP ′ under which the string is invariant doesn’t affect x3.

Unlike the pure parity transformation, the CP ′ symmetry survives the deformation to

N = 1 supersymmetry. More precisely, the symmetry survives if the parameters in the

superpotential W = µnAn are real. Alternatively we can think of these parameters as

transforming under CP ′ : µn → µ⋆
n. The same behavior is seen in the worldsheet theory.

Invariance of the final term in (4.20) requires that CP ′ : µn → µ⋆
n, in agreement with the

4d analysis.

The four-fermi term. So far we have neglected the role of σ on the string worldsheet.

In the N = (2, 2) case, we saw that σ correctly takes into account the effect of the Yukawa

couplings in four-dimensions, resulting in a four-fermi term (2.49) on the worldsheet. It

will play the same role here. The equation of motion (2.50) for the adjoint field A is

now changed by the superpotential Ŵ(A). Even if the superpotential has µ2 = 0, so the

profiles of both left and right-moving fermionic zero modes are the same as in the N = 2

theory, the solutions to the full equations of motion, including Yukawa sources for A, will

necessarily differ. We would expect this to feed back into the worldsheet dynamics. As in

the N = (2, 2) case, it is difficult to determine this explicitly, but thankfully the lifting of

the zero modes is once again dictated by the symmetries of the problem.

Let’s start by examining the simplest case, with Ŵ(A) = µ2A
2, so that the fermionic

constraint equation is given by (4.22). Integrating out σ on the worldsheet once again gives

rise to a four-fermi term

L4−fermi = − |ξ̄−iξ+i|2
(r + 2|µ2|2/T )

(4.32)

which, up to an overall rescaling, looks the same as the N = (2, 2) four-fermi term (2.49).

However this is deceptive, for the constraints (4.22) ensure that (4.32) now includes a

component of χ−. Previously, as we discussed in section 2.4.1, χ− was prohibited from

appearing in the four-fermi term since it was a Goldstino mode in the N = (2, 2) theory.

It loses this protection in the N = (0, 2) theory.

If the superpotential contains quadratic and higher order terms, then integrating out

σ results not only in a four-fermi term on the worldsheet, but also in a slew of higher order

fermion lifting terms. These terms are an interesting prediction of the deformation (4.11).

A comment on anomalies. In section (2.5.2), we saw that additional fundamental

N = 2 hypermultiplets in four dimensions contributed extra zero modes to the vortex

string which were captured in the gauged linear sigma model by adding (Nf − Nc) chiral

multiplets in the anti-fundamental representation of the U(k) worldsheet gauge group.

There exists a trivial generalization in the N = 1 theories in which we add only four-

dimensional chiral multiplets, instead of full hypermultiplets. For example, the addition

of a single four dimensional chiral multiplet Q, transforming in the Nc of U(Nc), will

contribute both bosonic and fermionic zero modes to the vortex string. These live in an

N = (0, 2) chiral multiplet Φ̃ of the worldsheet theory, transforming in the k̄ of U(k). In
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contrast, the addition of Q̃, transforming in the N̄c of U(Nc), will contribute only fermi

zero modes, living in an N = (0, 2) fermi multiplet Γ̃ which transforms in the k̄ of U(k).

While the above observation is trivial, there is an interesting corollary in the quan-

tum theory. The four-dimensional theory with unequal numbers of fundamental and

anti-fundamental chiral multiplets is inconsistent at the quantum level, suffering a gauge

anomaly. This inconsistency descends to the vortex worldsheet, which also suffers a U(k)

gauge anomaly unless the number of chiral multiplets Φ̃ is equal to the number of fermi mul-

tiplets Γ̃. It would be interesting to study vortices in chiral, anomaly free four-dimensional

gauge theories, to see if there is a corresponding delicate anomaly cancellation on the vortex

worldsheet.

The SQCD limit. To reach the N = 1 SQCD limit of the four-dimensional theory, we

send µ2 → ∞ to decouple the adjoint chiral multiplet A. On the worldsheet, this has the

effect of decoupling the U(k) adjoint chiral multiplet Σ. At the same time, the constraint

on the left-moving fermions (4.22) becomes simply χ− = 0, which effectively removes the

fermi multiplet Ξ. The right-moving fermions on the worldsheet are still constrained to

obey φ̄ξ+i = 0 (in the case Nf = Nc) while the left-moving fermions ξ−i are unconstrained.

Nonetheless, the theory appears to be free of worldsheet gauge anomalies.

In this limit, the four-dimensional theory develops an enhanced, chiral flavor symmetry

S[U(Nf )×U(Nf )], rotating left and right movers independently. (The “S” here is to remind

us that the overall U(1)B is part of the gauge group). In the presence of the FI parameter,

this is broken spontaneously and the surviving symmetry in the vacuum is,

S[U(Nc) × U(Nf − Nc)] × U(Nf ) × U(1)R (4.33)

Here the U(1)R is the anomaly-free R-symmetry. The same symmetry enhancement is also

seen on the vortex worldsheet theory proposed above. There is once again a particular

choice for the anomaly free R-current.

There is an issue with the normalizability of the fermi zero modes in this limit. As

µ2 → 0, the Dirac equation for the left-moving fermi zero modes become Dz
¯̃ψ−i = 0 which

has only non-normalizable solutions. This could be mirrored on the worldsheet by infinite

kinetic terms for Γi, of the type that we neglected in the discussion above. Alternatively,

one could add a suitable deformation to the 4d theory, such as the meson field considered

in [13], which once again renders these zero modes finite.

4.6 A D-brane construction

One can construct a D-brane configuration whose low-energy dynamics is governed by

the four-dimensional theory of interest, namely N = 2 super QCD, broken to N = 1

by the addition of a superpotential Ŵ(A) for the adjoint chiral multiplet. One starts

with the usual Hanany-Witten set-up for four dimensional N = 2 gauge theories [26, 27].

This consists of two parallel NS5-branes lying in the 012345 directions and separated a

distance ∆X6 ∼ ls/e
2 in the X6 direction. The N = 2 U(Nc) gauge theory lives on Nc

D4-branes, with worldvolume 01236, which are suspended between these two NS5-branes,
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while Nf D6-branes with worldvolume 0123789 provide the hypermultiplets. To describe

the deformation (4.1) to N = 1 supersymmetry, we introduce the complex coordinates

v = X4 + iX5 , w = X8 + iX9. (4.34)

A superpotential Ŵ(A) is induced

NS5−brane

D2−brane

N  D4−branesc

NS5−brane

v

X

X

6

7

Figure 3: The deformed brane configuration.

on the D4-brane worldvolume if we bend

the right-hand NS5-brane so that it no

longer lies at the point w = 0, but rather

on the complex curve [41]

w = Ŵ(v).

Note that in the limit µn → ∞, with µn

defined in (4.24), the curved NS5-brane

becomes multiple flat NS5-branes, lying

a constant values of v = X4 + iX5, given

by the roots of Ŵ. This is the descrip-

tion of the superpotential first presented

in [42, 43].

We may now pass through the series of moves described in [1], turning on a FI pa-

rameter by separating the two NS5-branes in the X7 direction, and identifying the vortices

as stretched D2-branes. The final result is shown in figure 3 in the case of Nf = Nc.

The figure shows a slice through w = 0. The dots depict the roots of Ŵ(v), where the

curved NS5-brane intersects the w = 0 plane; the ghostly dotted line shows where the

NS5-brane has left this plane and is living at some other value of w. Figure 3 corresponds

to a quartic superpotential, with three critical points. One can check that the theory on

the D2-brane preserves N = (0, 2) supersymmetry. It is clear from the brane set-up that

the D2-brane has a supersymmetric ground state only when it may safely stretch from the

curved NS5-brane to a D4-brane, remaining at constant v = mi and without leaving the

safety of w = 0. This requires

∂Ŵ(v)

∂v

∣

∣

∣

∣

∣

mi

= 0. (4.35)

This is the brane perspective on the statement that BPS vortices only exist when (4.35) is

satisfied. It provides further evidence that a worldsheet superpotential of the form (4.11)

is required.

4.7 A different superpotential

To end this section, we consider a different deformation of the N = 2 theory which breaks

the four dimensional supersymmetry to N = 1. We add a superpotential of the form,

WN=2 =
√

2

Nf
∑

i=1

Q̃iVi(A)Qi. (4.36)
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Here Vi(A) is an arbitrary holomorphic function of A. The four-dimensional quantum

dynamics of theories of this type was previously studied in [44 – 46, 41]. We are here

interested in the effect on the vortex worldsheet. In fact, we have already met one example

of such a deformation that preserves N = 2 supersymmetry, because the complex mass

term is of this form with Vi(A) = A − mi. In that case, we saw that the effect was not to

induce a superpotential on the worldsheet, but instead to change the relationship between

(0, 2) fermi and chiral fields,

D̄+Γi = 2iΣΦi −→ D̄+Γi = 2i(Σ − mi)Φi. (4.37)

Given this, it is natural to conjecture that the general deformation (4.36) is captured by

the worldsheet theory with the relationship,

D̄+Γi = 2iVi(Σ)Φi. (4.38)

We will now provide evidence that this is indeed the case. We will show that the deforma-

tion (4.38) is in agreement with all symmetries of the theory, and reproduces the known

behavior of the vortex. The details of the calculations are similar to those presented earlier,

so we shall be brief.

Let us firstly study what becomes of the vortex. We take the vacuum of the four-

dimensional theory to be

Qa
i = vδa

i , Q̃i = 0 A = diag(ν1, . . . , νNc) (4.39)

where νi is one of the roots of Vi. If the νi are all distinct, the situation is the same as

the one we encountered in section 2.5.1 with distinct masses mi: there are Nc different

vortices, each supported by the winding of a different Qi. In contrast, if all νi coincide, the

full CPNc−1 internal moduli space of the vortex is restored.

Let us see how this is reproduced on the vortex worldsheet by the deformation (4.38).

For definiteness, we take a single k = 1 vortex string in the Nf = Nc theory. The bosonic

part of the worldsheet theory is given by,

Lbose = T |∂mz|2 +

Nc
∑

a=1

(

|Dmφa|2 − 2|Vi(σ)|2|φi|2
)

+ D

(

Nc
∑

i=1

|φi|2 − r

)

+
θ

2π
u01.

If the roots of νi of Vi(σ) are distinct, this theory has isolated vacua, given by

|φj |2 = rδij , σ = νi. (4.40)

However, there is an ambiguity here since Vi has multiple roots νi. Suppose, for definiteness,

that Vi(σ) is a polynomial of degree Pi. Then it appears that, for each i = 1, . . . , Nc,

there are Pi different vacua of the worldsheet theory. How are we to interpret these?

In past examples [18, 3, 4], different vacua of the worldsheet corresponded to different

physical vortices — see section 2.5.1. But we certainly don’t want the same interpretation

here because the four-dimensional theory doesn’t have Pi distinct vortices, each with Qi

winding asymptotically. Thankfully, the interpretation of the multiple worldsheet vacua in
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the present case is somewhat different. For fixed i = 1, . . . , Nc, the Pi different vacua differ

only in the value of the auxiliary field σ. The field σ is to be integrated out, set equal to its

classical, algebraic equation of motion. But there are Pi different solutions to this algebraic

equation. The theory is only complete if we specify which of these solutions we are to take.

This means that the vacuum σ = νi chosen in (4.40) is not a dynamical variable, but

rather a parameter of the worldsheet theory. We are therefore free to fix it as we please,

and the only natural candidate is to equate it with the four-dimensional vacuum value νi

in (4.39).14 The end result is a situation where the same worldsheet Lagrangian describes

the vortex string in different four-dimensional vacua; the specific four-dimensional vacuum

of interest appears as a boundary condition on the auxiliary σ field.

As a check of the conjecture (4.38), we can confirm that the U(1)R × U(1)V charges

are consistent. If we write the superpotential as

Vi(A) =
∑

n=0

h(i)
n An (4.41)

then we are required to assign spurion charge (2− 2n, 0) to h
(i)
n . Let’s check that this is in

agreement with the worldsheet. The deformation (4.38) gives rise to the terms

Lvortex = . . . +
√

2
∑

n

(nh(i)
n ξ̄−iσ

n−1φiζ̄+ + h(i)
n ξ̄−iσ

nξ+i) + . . . (4.42)

from which we learn that h
(i)
n must again be assigned charge (2−2n, 0) under the worldsheet

U(1)R × U(1)V .

A. The alphabet

This appendix is included to help the reader keep track of the burgeoning conventions. The

four dimensional fields are all components of N = 1 superfields,

Aµ : 4d gauge field in the vector multiplet V

A : Adjoint valued 4d scalar in the chiral multiplet A

Qi : Fundamental 4d scalar in the chiral multiplet Qi

Q̃j : Fundamental 4d scalar in the chiral multiplet Q̃j

λ : Adjoint valued 4d fermion in the vector multiplet V

η : Adjoint valued 4d fermion in the chiral multiplet A

ψi : Fundamental 4d fermion living in the chiral multiplet Qi

ψ̃j : Anti-fundamental 4d fermion in the chiral multiplet Q̃j.

14The equation of motion for σ includes a term bilinear in the fermions, seen explicitly in (4.42). The root

of the equation of motion is taken to be the four-dimensional vacuum value νi when the fermions vanish,

and is continuously connected to νi when the fermions turn on.
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The worldsheet fields are all components of N = (0, 2) superfields as described in section 3:

z : Worldsheet scalar arising from broken translational invariance,

in the chiral multiplet Z

φi : Worldsheet scalar corresponding to orientation modes of the string,

in the chiral multiplet Φi

σ : Worldsheet auxiliary scalar in the chiral multiplet Σ

um : Worldsheet gauge field in the vector multiplet U

χ+ Worldsheet Goldstino fermion in the chiral multiplet Z

χ− Worldsheet fermion in the fermion multiplet Ξ

ξ+i : Worldsheet fermions living in the fermion multiplet Φi.

ξ−i : Worldsheet fermions in the fermion multiplet Γi

ζ̄+ : Worldsheet auxiliary fermion living in the chiral multiplet Σ.

ζ− : Worldsheet auxiliary fermion in the vector multiplet U.
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